Note that this is a sample of a lab report written
by a student. It is not perfect and no attempt has been made to correct the errors in it. The data (measurements
and observations) found in this report will not be the same as that found in your lab report. Read the web page
on plagiarism before writing your lab report and follow the "Formal Lab Report Guide."
-----------------------------------
Page 1 -----------------------------------
Determining what happens
to sodium bicarbonate and acetic acid when they are combined in a solution, and why solution loses its mass.
Writer: --------, ---------
Partners: --------, ---------
--------, ---------
--------, ---------
28, Oct, 03 and
31, Oct, 03
Room 215A, Dorman
High School, Roebuck SC 29376
--------------------------------
Pages 2, 3, 4 --------------------------------
V. Results
In the lab the results of what
happened where pretty straightforward as far as observation went. On the 28th
of October the first part of the lab was completed, which was to observe what happens when a mixture of sodium bicarbonate
(baking soda) and acetic acid come together to make a solution. The observations
were clear, when the sodium bicarbonate was added to the acetic acid bubbles automatically formed and started to increase
rapidly, also a strong scent was given off mainly because of the acetic acid. In
some parts of the lab some people saw fumes rising off the top of the Erlenmeyer flask that was used, and others did not. This could be due to the fact that people were seeing the reaction take place at different
angles during the lab. When the solution had stopped fizzing, and for the most
part calmed down, it took on a gelatin like form and continued to harden. At
this point the solution was measured, and to the confusion of the lab groups, the mass never stayed the same. It was continually dropping, here are some measurements for example:
211.30g
210.60g
208.04g
It is apparent that the mass
continued to drop rapidly during the measurement of the solution. The solution
also hardened to almost a rock type solid. The speculation as to why the mass
is that the solution was turning into as gas and releasing into the atmosphere of the room.
In the lab on the 31st of October the lab groups were expected to have final procedures to find out exactly
what was happening to the solution as its mass rapidly dropped. All the procedures
that were to be done were repeated first measuring all the materials, the Erlenmeyer flask weighed 119.55g, the beaker weighed
48.25g, the acetic acid 20.05g (at 25mL), and the baking soda weighed 35.42g. After
all that was weighed the acetic acid and the baking soda were put together, but a balloon was used to put the baking soda
in so the gas would be trapped in the balloon (the balloon weighed 3.012g, and w/ the baking soda it weighed 38.01g) and the
measure of the reactants together was 175.0 g. As was expected, the gas was trapped
in the balloon, making the balloon expand. The final products were almost the same as the reactants they weighed 174.58 g. When finding the percent error both of these numbers were used first subtracting the
accepted mass, which was 175.0, and the experimental mass, which was 174.58 g, and then dividing the final number by the accepted
mass (see appendix a).
VII. Discussion
Analysis (It should be noted that this lab used only half
the ingredients needed in this lab due to loss of products in experiment before hand).
The lab accomplished mostly
to show how the states of matter change and how mass is lost during a combination of two compounds. When the first lab was finished on the 28th of October, only one conclusion was made, that mass
was being was being lost in the reaction w/ the sodium bicarbonate, and the acetic acid.
To prove this all that was needed was a simple balloon to trap the gas and prove that mass being lost, by expanding
the balloon. When the lab was finished the observations were even with the results
and the finished products were as expected. It was proven that mass was lost
in the form of gas releasing from the Erlenmeyer flask.
Balanced Equation:
NaHCO3 + CH3COOHà H2CO3 + NaCH3COOà H2O
+ CO2 + NaCH3
Also because the air around
the experiment and in the atmosphere, it makes the weight of the C02 (see balanced equation) balance out because
the pressure of both of the elements are the same. The only way error could come
about is if some of the gas was release into the classroom and not directly into the balloon causing the measurement to be
unequal, and lost product, which could also be a factor if acetic acid and baking soda was lost in transferring into the Erlenmeyer
flask. There was in fact mass lost (mass really wasnt lost according to law of conservation of mass, but the mass of the gas
escaped and some product was lost making the mass different), in this lab causing a percent error, which was 0.24% the equation
is:
accepted mass-experimental
mass/accepted mass=%error or 175.0-174.58/175.0= 0.25% error. The math for proving
this, and the math for finding the molarity of the acetic acid, is attached in an appendix labeled A. Also this lab
showed and proved the law of conservation of mass that no mass can be created or destroyed during a chemical reaction, and
no mass was created or destroyed, even though the mass separated into different forms such as a gas, and a solid, it was all
still there in some form, just not as it was originally.